Sensor specifications

The EGHSX03Q02 graphene Hall sensor is designed for use in extreme cryogenic environments with high sensitivities. It can operate down to mK temperatures while keeping very high sensitivity.

Absolute maximum ratings

Parameter	Min	Max	Units
Supply voltage	-24	+24	V
Supply current	-5	+5	mA
Operating temperature *	<1	350	K
Storage temperature	230	350	K

^{*} Specifications may change at extreme low temperatures.

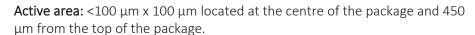
Recommended operating conditions

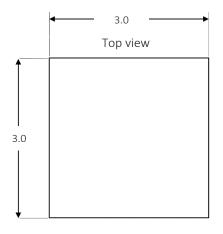
Parameter	Min	Typical	Max	Units
Supply current *		200	5000	μΑ

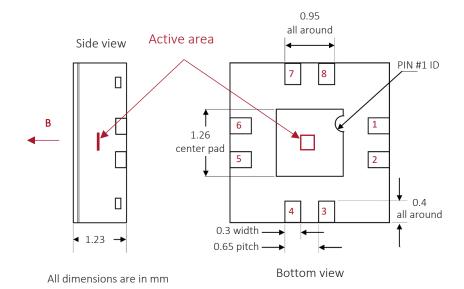
^{*} A higher current supply will give a larger voltage output for a given sensitivity and field, based on V/AT sensitivity.

Performance characteristics

Ambient temperature = 300 K, unless otherwise specified. I_N = 200 μ A.


Parameter	Test conditions/notes	Min	Typical	Max	Units
Measurable field range	(Estimated – testing ongoing)	±0.5 (5)			T (kG)
Magnetic equivalent noise	1 T field at 1 Hz, I = I _N		50	315	μT/VHz
Spectral noise density	at 1 Hz, I = I _N		10	50	μV/VHz
Magnetic equivalent thermal noise floor	Freq > Corner frequency		0.06		μT/VHz
Sensitivity	At ambient temperature		800 (80)		V/A.T (mV/A.G)
Linearity of Hall voltage	$I = I_N$, at 300 K, at 4 K,		0.2		% of full scale
Internal resistance	Between pin 1/2 and 5/6, and between pin 3/4 and 7/8, at field B = 0 T		5	8	kΩ
Ohmic Offset	B = 0 T		30	50	Ω
Temperature coefficient of offset	I = I _{N,} at ambient temperature		0.1		Ω/Κ
Temperature coefficient of sensitivity	I = I _{N,} at ambient temperature		0.2		%/K


Packaging information


Package type: 8-pin QFN, ceramic, Ni-free, surface mount.

Recommended soldering method: reflow soldering with maximum peak temperature of 150-175°C and 40-80s maximum for temperature >138°C.

Pin	Signal
1/2 or 5/6	A+
5/6 or 1/2	A-
3/4 or 7/8	B+
7/8 or 3/4	B-

Note 1: Pin 1 and 2, pin 3 and 4, 5 and 6, 7 and 8 are connected to each other within the package.

Note 2: Input voltage can be supplied with either polarity. Hall voltage polarity will depend on V_{IN} polarity and field polarity.

- ullet A and B can be used as V_{IN} (input) or V_H (output) interchangeably.
 - Polarity of each pair can also be flipped interchangeably.

For further information, please contact us:

www.paragraf.com

sales@paragraf.com

