High resolution magnetic field measurements under operational extremes, far beyond the scope of any other sensing solution:

  • Increase manufacturing throughput by quicker magnet mapping, replacing existing NMR probe mapping stages.

  • Measure directly in cold bore – room temperature inserts not needed, allowing quicker collection of quality data.

GHS09CC icon

Achieve high resolution over extremely large magnetic field ranges, in a small, low-power package capable of operating at cryogenic temperatures.

Utilising the inherently high sensitivity of this two-dimensional material, the GHS-C v1.0 achieves outstanding sensitivity and verified 3 K operation, with the technology previously proven at mK, whilst introducing new properties such as a negligible planar Hall-Effect and all-round robustness. This allows:

  • More accurate characterisation of material properties at the extremes of temperature and magnetic fields.
  • Achievement of the lowest possible base temperatures – the power consumption of the GHS-C is extremely low, keeping heat load at cold finger to a minimum.
  • Small form factor when compared to fluxgates and NMR probes.

The lack of planar Hall effect will also aid experiments where either vector fields are used or the sample must be rotated in the field to understand material properties. Lower noise allows cleaner high resolution data.

Applications include quantum computing, high energy physics labs, cryogenic cooling equipment, fusion, medical accelerators, ultra-low temperature research, and magnet manufacturing.

The GHS-C v1.0 comes as standard with a cryogenic-rated socket for ease of implementation.

Paragraf also produces a kit for simultaneous data collection from up to 8 GHS sensors – the
GHS Array Starter Kit

LEARN MORE
GHS Array Kit icon

To discuss your specific magnetic field detection and measurement requirements…

Please Get In Touch

Hall-Effect Sensors discussed in the Knowledge Centre and News