Cardea Bio Develops Exosome and Extracellular Vesicles (EV) Detection Technology Called EV-Chip, Showcasing Cancer and Aging Dx Applications

Geri Topore – University of Manchester
The New EV-Chip Biosensor Detects Exosome Cancer & Aging Biomarkers
  • EV-Chip paves way for new generation of portable, point-of-care devices
  • Enables real-time analysis of liquid biopsy samples for biomarkers of cancer, other age-related diseases

SAN DIEGO–(BUSINESS WIRE)–Cardea Bio, a Tech+Bio company integrating molecular biology with semiconductor electronics via graphene-based biology-gated “Cardean Transistors,” has announced that its Chief Scientific Officer, Dr. Kiana Aran, and collaborators have published a paper titled “Rapid and Electronic Identification and Quantification of Age-Specific Circulating Exosomes via Biologically Activated Graphene Transistors” in the peer-reviewed journal Advanced Biology on April 30, 2021.

The paper reports a novel biosensor called the EV-Chip, a prototype portable, low-cost reader for the detection and quantification of exosome biomarkers of cancer and other aging-related diseases. It demonstrates the EV-Chip’s clinical potential to evaluate human liquid biopsy samples through rapid, label-free identification of known biomarkers, CD63 and CD151. The publication was the result of a collaboration between Cardea Bio, Inc., the Keck Graduate Institute, the Keck Science Department, and the University of California, Berkeley.

“Modern clinical advances have extended the bounds of the human lifespan, revealing a new class of health issues related to the aging process, such as cancer as well as inflammatory and degenerative diseases,” said Dr. Aran. “Scientists will be able to use the EV-Chip for biomarker discovery and unlock a new source of diagnostic biomarkers and therapies to combat these diseases more effectively.”

The EV-Chip has high-specificity antibodies that bind to one or more exosome biomarkers of interest embedded into a Cardean Transistor chip. It can be functionalized to detect virtually any exosome biomarker. When a plasma-derived exosome sample is added, the one-molecule-thick, biocompatible graphene transistor detects antibody binding events and sends digital feedback to a small device that can connect easily to any computer and return results within an hour. The whole setup is small and simple to use, making it well-suited to a physician’s office or biological lab.

The EV-Chip stands to offer a degree of precision and real-time, direct quantification of exosome biomarkers not possible with other technologies, which involve large sample sizes, lengthy incubation periods, and chemical labeling. These methods also require vast expertise to run highly technical instruments and complete complex procedures at a central lab, which has created a bottleneck in the discovery of biomarkers of cancer and other aging-related diseases.

Dr. Paul Grint, Chairman of the Board of Directors of Cardea added, “Exosomes are promising biomarkers for aging-related diseases, particularly cancer. They have dynamic sets of proteins embedded in their walls that reflect cellular activities such as cell-cell communication, migration, and adhesion – activities that change as a result of cancer and aging. Without a way to measure exosomes at the point of care, they remain an untapped diagnostic resource.”

In the paper, the authors demonstrated the EV-Chip’s capabilities by using it to analyze two exosomal surface markers, CD63 and CD151. CD63 is a biomarker for cancer and viral infection, while CD151 is a cancer biomarker with prognostic and diagnostic value in tumor metastasis1 that generally increases with age2. The EV-Chip quantified CD63 with remarkable sensitivity, four to five orders of magnitude greater than a commercially available ELISA kit. Similarly, when used to measure CD151 in young and old subjects, the technology detected age-related changes as reliably as standard methods. Overall, the results demonstrate the EV-Chip’s potential to usher in a new era of powerful, non-invasive, point-of-care diagnostics and prognostic tools for the management of aging-related diseases.

“The talented scientists who contributed to this chipset development and paper have given the world a new technology with the potential to radically accelerate the discovery and use of new exosomes biomarkers,” said Michael Heltzen, CEO of Cardea Bio. “Advances enabled by the EV-Chip will further our understanding of intercellular communication and cellular biology that will help us gain a new degree of insight to important areas such as cancer and other age-related diseases.”

The EV-Chip is a Cardean chipset variant that utilizes the Cardean transistor to detect live molecular signals. Other chipsets include Cardea’s CRISPR-Chip™ technology, which detects large nucleic acid insertion and deletions, and its newer product version, the SNP-Chip, which detects single nucleotide polymorphisms (SNPs). To learn more, please visit If you’re looking to join our growing team, please contact


1. R. Sadej, A. Grudowska, L. Turczyk, et al. Lab. Invest. 2014, 94, 41.

2. E. Eitan, J. Green, M. Bodogai, et al, Sci. Rep. 54 2017, 7, 1342.

About Advanced Biology

Advanced Biology is an interdisciplinary and international academic journal that publishes original manuscripts, reviews, perspectives, and commentary of high significance to life scientists working in all areas of biology. The journal focuses on applied research and technologies that enhance and harness biological systems and showcases novel findings of wide biological relevance resulting from both basic and applied research.

This post was originally published at Cardea Bio was acquired by Paragraf on 2 May 2023.

Join our mailing list